34 research outputs found

    Airborne hyperspectral discrimination of tree species with different ages using discrete wavelet transform

    Get PDF
    In this article, the capability of discrete wavelet transform (DWT) to discriminate tree species with different ages using airborne hyperspectral remote sensing is investigated. The performance of DWT is compared against commonly used traditional methods, i.e. original reflectance and first and second derivatives. The hyperspectral data are obtained from Thetford forest of the UK, which contains Corsican and Scots pines with different ages and broadleaved tree species. The discrimination is performed by employing three different spectral measurement techniques (SMTs) including Spectral Angle Mapper (SAM), Spectral Information Divergence (SID), and a combination of SAM and SID. Five different mother wavelets with a total of 50 different orders are tested. The wavelet detail coefficient (CD) from each decomposition level and combination of all CDs plus the approximation coefficient from the final decomposition level (C-All) are extracted from each mother wavelet. The results show the superiority of DWT against the reflectance and derivatives for all the three SMTs. In DWT, C-All provided the highest discrimination accuracy compared to other coefficients. An over- all accuracy difference of about 20 – 30% is observed between the finest coefficient and C-All. Amongst the SMTs, SID provided the highest accuracy, while SAM showed the lowest accuracy. Using DWT in combination with SID, an overall accuracy up to around 71.4% is obtained, which is around 13.5%, 14.7%, and 27% higher than the accuracies achieved with reflectance and first and second derivatives, respectively

    Big Data Analytics for Earth Sciences: the EarthServer approach

    Get PDF
    Big Data Analytics is an emerging field since massive storage and computing capabilities have been made available by advanced e-infrastructures. Earth and Environmental sciences are likely to benefit from Big Data Analytics techniques supporting the processing of the large number of Earth Observation datasets currently acquired and generated through observations and simulations. However, Earth Science data and applications present specificities in terms of relevance of the geospatial information, wide heterogeneity of data models and formats, and complexity of processing. Therefore, Big Earth Data Analytics requires specifically tailored techniques and tools. The EarthServer Big Earth Data Analytics engine offers a solution for coverage-type datasets, built around a high performance array database technology, and the adoption and enhancement of standards for service interaction (OGC WCS and WCPS). The EarthServer solution, led by the collection of requirements from scientific communities and international initiatives, provides a holistic approach that ranges from query languages and scalability up to mobile access and visualization. The result is demonstrated and validated through the development of lighthouse applications in the Marine, Geology, Atmospheric, Planetary and Cryospheric science domains

    Recent advances in silica glass optical fiber for dosimetry applications

    Get PDF
    In this paper, we review the highly promising silica glass, fabricated as doped and undoped optical fiber for intended use in radiation dosimetry. The dosimetry techniques reviewed here, underpinned by intrinsic and extrinsic defects in silica glass, focus on Thermoluminescence (TL), Optically Stimulated Luminescence (OSL) and Radioluminescence (RL), with occasional references to the much more established Radiation Induced Attenuation (RIA). The other focus in this review is on the various materials that have been reported earlier as dopants and modifiers used in silica glass optical fiber radiation dosimeters. This article also elaborates on recently reported optical fiber structures, namely, cylindrical fibers, photonic crystal fibers and flat fibers, as well as dimensions and shapes used for optimization of dosimeter performance. The various types of optical fiber radiation dosimeters are subsequently reviewed for various applications ranging from medical dosimetry such as in external beam radiotherapy, brachytherapy and diagnostic imaging, as well as in industrial processing and space dosimetry covering a dynamic dose range from μGy to kGy. Investigated dosimetric characteristics include reproducibility, fading, dose response, reciprocity between luminescence yield to dose-rate and energy dependence. The review is completed by a brief discussion on limitations and future developments in optical fiber radiation dosimetry

    Latest developments in silica-based thermoluminescence spectrometry and dosimetry

    Get PDF
    Using irradiated doped-silica preforms from which fibres for thermoluminescence dosimetry applications can be fabricated we have carried out a range of luminescence studies, the TL yield of the fibre systems offering many advantages over conventional passive dosimetry types. In this paper we investigate such media, showing emission spectra for irradiated preforms and the TL response of glass beads following irradiation to an Am-241-Be neutron source located in a tank of water, the glass fibres and beads offering the advantage of being able to be placed directly into liquid. The outcomes from these and other lines of research are intended to inform development of doped silica radiation dosimeters of versatile utility, extending from environmental evaluations through to clinical and industrial applications. (C) 2015 Elsevier Ltd. All rights reserve

    Characterization of transient response in a fiber grating fabry-perot lasers

    No full text
    A comprehensive study on the transient response of fiber-grating Fabry Perot (FGFP) laser is numerically conducted. Fiber Bragg grating (FBG) is used as a wavelength selective element to control the external optical feedback (OFB) level. In addition to the external OFB level, the effect of other external cavity parameters such as temperature, injection current, dc-bias level, coupling coefficient, and gain compression factor on transient response characteristics of the laser are investigated. The temperature dependence (TD) of response characteristics is calculated according to TD of laser parameters instead of well-known Pankove relationship. Results show that, by increasing the laser injection current, the relaxation oscillation�s amplitude, frequency, and damping rate are increased, while the laser turn-on time delay is reduced. In addition to the injection current and dc-bias level, the turn-on time delay can be reduced by increasing OFB reflectivity. It is shown that the optimum external fiber length ðLext� is 3.1 cm and the optimum range of working temperature for FGFP laser is within �2 �C from the FBG reference temperature ðTo�. Also, it is shown that antireflection (AR) coating facet reflectivity value of 1 � 10�2 is sufficient for the laser to operate at good response characteristics with low fabrication complexity

    Characterization of Transient Response in Fiber Grating Fabry–Perot Lasers

    No full text

    Characterization of Turn-On Time Delay in a Fiber Grating Fabry–Perot Lasers

    No full text

    Photonic Crystal Fiber-Based Surface Plasmon Resonance Sensor with Selective Analyte Channels and Graphene-Silver Deposited Core

    Get PDF
    We propose a surface plasmon resonance (SPR) sensor based on photonic crystal fiber (PCF) with selectively filled analyte channels. Silver is used as the plasmonic material to accurately detect the analytes and is coated with a thin graphene layer to prevent oxidation. The liquid-filled cores are placed near to the metallic channel for easy excitation of free electrons to produce surface plasmon waves (SPWs). Surface plasmons along the metal surface are excited with a leaky Gaussian-like core guided mode. Numerical investigations of the fiber’s properties and sensing performance are performed using the finite element method (FEM). The proposed sensor shows maximum amplitude sensitivity of 418 Refractive Index Units (RIU−1) with resolution as high as 2.4 × 10−5 RIU. Using the wavelength interrogation method, a maximum refractive index (RI) sensitivity of 3000 nm/RIU in the sensing range of 1.46–1.49 is achieved. The proposed sensor is suitable for detecting various high RI chemicals, biochemical and organic chemical analytes. Additionally, the effects of fiber structural parameters on the properties of plasmonic excitation are investigated and optimized for sensing performance as well as reducing the sensor’s footprint

    High sensitivity flat SiO fibres for medical dosimetry

    No full text
    We describe investigation of a novel undoped flat fibre fabricated for medical radiation dosimetry. Using high energy X-ray beams generated at a potential of 6MV, comparison has been made of the TL yield of silica flat fibres, TLD-100 chips and Ge-doped silica fibres. The flat fibres provide competitive TL yield to that of TLD-100 chips, being some 100 times that of the Ge-doped fibres. Pt-coated flat fibres have then been used to increase photoelectron production and hence local dose deposition, obtaining significant increase in dose sensitivity over that of undoped flat fibres. Using 250kVp X-ray beams, the TL yield reveals a progressive linear increase in dose for Pt thicknesses from 20nm up to 80nm. The dose enhancement factor (DEF) of (0.0150±0.0003)nm Pt is comparable to that obtained using gold, agreeing at the 1% level with the value expected on the basis of photoelectron generation. Finally, X-ray photoelectron spectroscopy (XPS) has been employed to characterize the surface oxidation state of the fibre medium. The charge state of Si2p was found to lie on 103.86eV of binding energy and the atomic percentage obtained from the XPS analysis is 22.41%. © 2014 Elsevier Ltd
    corecore